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ABSTRACT

The generalized phase shift (GPS) approach to the problem of rota-
tionally inelastic molecular collisions is extended from the level of
the first-order (semiclassical) approximation of paper XIV to the
essentially infinite order level, but specialized to the full classical
limit. The limitations and assumptions are that 1) the de Boer reduced
wavelength parameter be small (i.e., lﬂf << 4 ), 2) the relative
translational motion takes place under the influence of the orientation-
averaged (spherical) part of the anisotropic interaction potential
(i.e., curved but planar trajectories), and 3) the rotational energy,

Erot’ may be well-approximated by its classical expression (i.e., rota-
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tional quantum numbers »>> 1 ). The procedure is applied numerically
to a model problem involving an anisotropic L.-J. (12,6) potential (as
in XIV), taking advantage of the previously computed generalized action
integrals. The program yields directly an arbitrarily chosen specified
number of moments of the inelasticity probability density function
é;D(AErot) at various impact parameters b . Inversion of the set of
moments leads to 6D(AErot>' For the examples chosen, the lowest

eight moments sufficed to obtain practical accuracy of convergence on

the inversion. For large b , i.e., in the weak-coupling regime, the

gl

first moment vanishes and the second moment (which can be well-approximated

using the first-order results of XIV) dominates, governing the breadth

of the inelasticity density function.



In paper XIV of this series,l the lowest (first-order) approximation
of the generalized phase shift2 (GPS) treatment of rotationally inelastic
molecular collisions was applied to the case of atom-rigid rotor scat-
tering. While restricted to "high" initial rotoer energies,3 these
calculations were of a semiclassical nature (i.e., classical relative
translational motion but quantized rotor energy levels). The present
work takes advantage of the recent development4 of a method of implemen~
tation of the "infinite—order"5 approximation of the GPS method, applied
to systems of the type considered in XIV. The present caleculations are
limited to the purely classical regime. As is discussed below, this
restriction permits the use of a relatively simple procedure for obtaining
the moments of the rotational inelasticity probability density function.
Inversion of a set of the moments then yields the density fumection it-
self.

In the following, expressions for the moments of the density function
are exhibited. These equations are then put. into a computationally
convenient form, and a method of inverting the moments is described.
Finally, numerical results obtained for model sygtems similar to those

considered in paper XIV are presented.
I. MOMENTS OF THE PROBABILITY DENSITY FUNCTION

A series of papers4 on the transport properties of a gas of diatomic
molecules has considered the evaluation of certain sums and integrals
of the rotationally inelastiec cross sections. 1In paper II of that

series, an expression6 (Eq. (T.II.27)) was obtained, which, for the case




of atom-rigid rotor scattering, reduces to:
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Here, /@ and /Z are respectively the initial and final rotor
energy quantum numbers, HE is the rotational energy change (in

units of kT), ¥ is a non-negative integer, I(,?;,Z; X Yy is the
degeneracy—averaged differential cross section for scattering at an
angle X s Lg= 75,'/5_ R L = yA 2 where 3\ indexes
the initial relative (orbital) angular momentum, and S is the three
dimensional rotation group defined by Euler angles < s %g and

u I Lo XS S ) is given by Eq. (T.IL.25), and may be

written:
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where bz is the classical impact parameter, and the sum is over
the branches of the deflection angle function contributing to a given
scattering angle. The quantity K(LaL;S) is given

by Eq. (T.I1.56), and, for atom-rigid rotor scattering is:
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Here, 1 1is the moment of inertia of the rotor, and H is defined by

Eq. (T.I.31):

J(25;:s) = ex,o[la’/—/(ji;s)j (4)

in terms of the quantity ,AJ7()?;;; Sj) . The present results zre
based on the approximation for /&F()?}S;.S) given by Eq. (XIT.72). It
should be noted that the integration in Eq. (1) is not over the entire

rotation group S , but is restricted (cf. Egs. (T.1.56) - (T.I.62)) to

regions in which

3] < ¥
and

With Egqs. (2) and (3), Eq. (1) may be transformed to yield:
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where (7(Jf;/(;73) is the probability of transition from rotor

state /fr to ’)? at an initial relative angular momentum

indexed by 3% . Eq. (3) for K(LéL;S) gives the classical limit.
Thus, the sum on the /hs of Eq. (7) should be replaced by an integral,

yielding:
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where / (,Z_,,Z ; 7)) is now a continuous distribution in the
guantum number spaces. It is more convenient to transform to the cor-

responding energy spaces through the elassical relation:

2‘ .
__/f..f__, (9)
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Thus we define
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@(E, ae, b)) 57 = P e D) (10)

so that Eq. (8) becomes
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or, in terms of the change, A € s
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Eq. (12) thus gives the moments of the rotational inelasticity proba-
bility density function in terms of three dimensional integrals of

powers of the quantity K(LaL;S).
11. MODEL CALCULATIONS
A. Methodology

As for the model calculations of paper XIV, the atom-rotor inter—

action potential was taken to be:
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With this choice, the approximation to the quantity /"{ (‘/G"?‘; 3 5)
(Eqs. (XII.72) and (X1I1.86)) is simply given in terms of the BLD&A» coaf~
ficients of XIV:
/ L
H(lh;f):7+’z'2 Bru, D(=p7),, (14)
Lo
where ? is the elastic phase shift, L indexes the FL (cas @)
“(s)
Legendre functions in Eq. (13), and the D So(,a are the usual repre-
sentation coefficients. As given by Eqs. (XIV.23) and (XIV.24), the
BLV‘A are closely related to the generalized action integrals

L)
(Sn o ,4/) of Eq. (XIV.25):
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where E*‘: f/é is the reduced initial relative translational
#* ' b .
energy and /‘1 —_ }1/6’ (lMe) 2 is the de Boer quantum parameter.

With these relations, Eq. (14) becomes:
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It is convenient to change the integration wvariable on the /55
of Bq. (12) from A€ to MC , the ratio of the change in rota-
tional energy to the initial translational energy. Thus, defining the

fraction (initial rotational to initial transiational energy)

t = £,../E, (20)

it readily follows that in the classical limit
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and, from Eqs. (3) and (19),
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In terms of }4 and the reduced variables, the conditions in Egs. (5
and (6) become:
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Detailed (but complicated) expressions for the partial derivatives of

FJ with respect to oA s /3 and U follow straightforwardly
from Eq. (18); they are displayed in Appendix A. Finally, for computa-
tional purposes, it is desirable to remove the apparent singularity of

K(La;;S) at (9 — ¢ and 77 . This is easily accomplished by

rearranging Eq. (25) to:
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<(L L S> { YRS
*)*f T4 Lo g

—[f,,—-——————-'::;z@_w(—s;m [m v(%) u:ﬁ—f-) ““F( Hs.

(28) - cop(24)

An inversion of the moments can be accomplished by expanding
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where, as is evident from Appendix A,

is finite at (3’ = O and 7

ﬁﬁD{l&ﬂ) as a Gram-Charlier (type A) series in the Hermite polynomials.

Thus, (denoting A‘F by X ),
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where /1{ is the mean value of x, 6“2 is the second moment about

- {
the mean, the iy are expansion coefficients, and the /ifr,(f) are

, 2
Hermite polynomials7 with weight factor & 77z . Multiplying Eq. (29)

by %Je”)(ﬁéﬁﬁ and integrating, an expression for the coefficients

in the expansion is obtained:
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As is shown in Appendix B, imsertion of explicit forms for the }JGM (éfﬁu

into Eq. (30) results in simple expressions for the &,y in terms of
the moments of ﬁ;KXI Thus, within the accuracy of the finite (N+1 term)
expansion in Eq. (29), the moments suffice to completely specify the
probability density function @(AJH .

As is discussed in detail below, the computational procedure con-
sisted of generating N+l moments of Cﬁ%ﬁﬂ{? by use of Eq. (23). These

moments, along with Eqs. (29) and (30) were then used to determine

Plst).
B. Calculations

All computations reported herein were performed on the University
of Wisconsin Computing Center Univac 1108. For evaluation of the moments,
the method of optimal coefficient38 was used with a, = 92313, ay = 24700,
a, = 95582 and p = 100063. This is a quasi-Monte Carlo quadrature
technique which offers the advantage that increasing the quadrature size
requires merely adding points to the existing lower order quadrature. In

crder to account for the constraints imposed by the integration limits,
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Eqs. (26) and (27), the following procedure was adopted. For each

FaN %
— g N N B B
gration point, the values of i (2 H ? and z(—éaﬁl N
k;% ' AT

computed and tested against the appropriate inequalities. If a point
viclated either constraint, it was rejected and a message to that effect
was printed out. In practice, viclations were found only in one test
case, having a high anisotropy (b2 = 1.0), corresponding to the strong
coupling regime. For the calculations presented, the conditions were
never violated. As is discussed in Sec. I1.0, for the cases investigatsd,
16,000 integration pocints and 10 or less moments sufficed to determine
6976249 . Limitations on the accuracy of the moment inversion technigue
are discussed in Appendix D.
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b, £ and (Vle'/fg) . In order to make use of the previously computed

The moments defined in Eg. (23) are functions of a

i

generalized action integrals, values of the last four parameters were

restricted to values compatible with those used in XIV, The correspo
; % % = 5ok fMERY ,
variables in XIV were E , b and §7XZ,Q16L( jf'z} . From Eq. (21), it

follows that
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Thus, specification of E and éf fixes the product ﬁ ?ﬁw /
For each of three sets of anisotropy parameters (32 = bz'w 0, bl = 0,5

a2 = bl = 0, b2 = 0.5 bl = 0, a, = b2 = (,5), ﬁa(h~?§ was calculated

E3 :
at b = 0.5, 0.9, 1.0, 1.1, 1.3, 1.5, for the following combinations:
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C. Results

Values of all moments calculated are tabulated in Appendix C. As

is evident, in most cases convergence to at least thres significant

gits was obtained with the 16000 point gquadrature. Exceptions occurred

marily for cases having a first moment small in comparison to the

square root of the second moment. In such situations, the POOTer CONVEr—
1 i

ence of (espetially) the first moment has only & minor sffect on the

D

imverted probability dewmsity function. The rate of cowvergence of the

sven moments was generally faster than that of the odd mowments.

Probability density curves cobtained from the inversion

re displayed in Figs. 1, 2 and 3. These correspond to the full 10 moment

]

inversions. To test comvergence, 6, 7, 8 and U moment inversions were

also performed for each case. Inspection of the results indicated tha
P P

in going from 8 to 10 moments, fzké%} values obtained varied lsss than

et

0

9
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It is interesting to note that although in all but two cases posi-
tive (but small) first moments were obtained (indicating a slight average
energy transfer into rotation, i.e., a positive average A4 Y, the

- ) - - ?’{ kS
maximum in the ﬁQﬁdf/ curves (particularly at low b ) occurs at

negative o . Thnis behavior is due to a somewhat slower falloff of

ag,
s

“‘:?
5@ for positive ‘A‘ﬁ . As would be expected, at large b (where
first-order perturbation theory is wvalid) the density functions become
more symmetric and sharply peaked. In this region, the second moment dom~

4

inates and governs the breadth of the curves. A comforting feature of



the results is that although emergy conservation limits were not imposed
in the inversion procedure, none of the density functions seriously
vioclate the conservation conditions on A%ﬁ .

It is of interest to consider the partial inelastic contributions

to the total cross section:

(aE,, = 5
A (o 2 = 5,27Tb ﬁ)(éfroe) A

3z)
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such that the total inelastic cross section for energy transfer ﬁ“gfm%
. . . 9 . . .

exceeding some arbitrary minimum” value, say z&El, is given by
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where [3E2 is the upper limit imposed by energy conservation. Tn the

notation of Eq. (20), f AEZI equals E for excitation (transfer of

energy into rotation) and Er for de~excitation (transfer of energy

pt
out of rotation). Egs. (32) and (33) can be written in reduced notation

such that
QRM(2f) = Q(af) /e (35

where & denotes the usual L.-J. (12,6) size parameter. Thus,
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Tn the insets on the left of each Figurgp2b* ﬁﬁ(ﬂ¥) is plotted y§_bch
for three values of | af [c The area under each such curve is the
quantity G(CQ*Cdﬁk/Z((A$) of Eq, (35). 1t is interesting to note the
appearance of the doubly peaked curves in Figs. 3(a) and (b). This be-
havior has been noted in previous sudden-approximation calculationselo
Presumably it results from the presence of both attractive and repulsive

anisotroples in the interaction potential.
III. DISCUSSION

The results obtained illustrate the computational feasibilty of the
classical limit of the "infinite order" GPS method applied to atom-rigid
rotor scattering. The procedure for obtaining the moments of the rota-
tional inelasticity probability density function is straighitforward.
Further, since higher moments involve only integrals of powers of the
first moment integrand, the method is ecconomical. The weakest step in
the work presented is the moment inversion technique. Although conver-
gent density function curves were obtained in all cases, they resulted
from only a finite number of moments of limited accuracy, so they remain

somewhat less certain than the moments themselves.
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APPENDIX A

From Eq. (18) and the properties of the vrepresentation coefficients,

the following expressions are readily obtained:
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Insertion of explicit forms for the F{en e ) into Eq. (30

APPENDIX B

Y
/

leads directly to the following expressions for the first 11 expansion

coefficients in Eq. (29).
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and

the origin follow directly from the binomial theorem.
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Expressions for the a's in terms of moments
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APPENDIX C

For computational purposes, Eq. (23) has been rewritten in the -

form:

M, = ;;';; S{[?H%}ZK@A;S)}WCZS

{1y

where Mn is the,nth moment of the probability density function,

Tables 1, 2 and 3 list valuesll obtained for the Mn' The final digit

of each entry is believed to be significant. Note that Mo = 1 through-

out.
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APPENDIX D

The problems inherent in obtaining aceurate probability density

functions from a knowledge of the first several moments are illustrated

(6, 8 and 9 moment inversions are similar). Although the two approx:
distributions agree to within ca. + 207 everywhere, neither provides a
particularly accurate representation of the rectangular function. This
behavior of relatively slow convergence beyond some level appears o
be characteristic of moment inversion techniques when the function whose
moments are to be inverted differs markedly from the zeroth-order
form (e.g., a Gaussian for the Gram~Charlier series).

The implication of Fig. 4 in the present context is to caution
against a too strict interpretation of the ﬁ?%fﬁ%ﬁ> curves presented
in Figs. 1-3. Thus, although reasonably convergent moment inversions

”
were obtained in all cases, the 10 moment inversion é?’ curves

still not accurately represent the true probability density functions.

However, since a consistent inversion technique was used throughout,
s
it is believed that at least the qualitative trends of [  with

® ®
b, E, etc. are properly represented.
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C. F. Curtiss, J. Chem. Phys. 52, 4832 (1970), paper XIT of this

series.

Y

"High" implies initial rotor states (2 ) such that

g
-
Y
"
-
.
o

well approximated by ;k?Z' .

C. F. Curtiss, J. Chem. Phys. 54, 872 (1971), paper I; C. ¥. Curtiss,
J. Chem.’Phys. (in press), paper IL; R. Olmsted and C. F. Curtiss,
Report WIS-TCI-424, Theoretical Chemistry Institute, Universivy of
Wisconsin, 6 November 1970, paper IIIL.

The term "infinite-—order" indicates that the full exponential in the

expression fcr_/eﬁﬁigj 5) (cf. Eq. (4)) has been retained. As

N

noted in Ref. 2, the expression used here (even with retemtion of the

full exponential) for the classical limit of /4 {4/, $) is valid

;s

only to first-order in the anisotropic portion of the inte:

ACtion

§

potential.

Eq. (T.II.27) denotes Eq. (27) of paper II of the transport proper-
ties series (Ref. 4), etc. Eq. (XIV.25) denotes HEq. (25} of paper
XIV of the present series.

Handbook of Mathematical Functions, edited by M. Abramowitz and

§

I. A. Stegun, National Bureau of Standards, Washington, D. U., 1964.

M. Klerer and G. A. Korn, eds., Digitsl Computer User's Handbook,

McGraw-Hill, New York, 1967, Sec. 2.5~11.
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a[Q(AEﬁd

It may be shown that ———— becomes infinite as AE

A (aEret) rot
approaches zero in such a manner that the integral (of Eq. (33))
over all szrot diverges. This is closely related to the well-
known divergence of the c¢lassical elastic differential cross
sections as :):—fr O
R. W. Fenstermaker and R. B. Bernstein, J. Chem. Phys. 47, 4417 (1967).
It has been shown that for the potentials investigated, M2 in the
limit of large b* can be obtained by evaluation of the /bs of
Eq. (7) using the first-—order semiclassical f%di%,(j;S) of pa
XIV. The values obtained here and in paper XIV are consistent with

this result (numerical agreement to about three significant figures).

In some cases, agreement persists to surprisingly low values of b



Figure 1.

Figure 2.

Figure 3.

Figure 4.

FIGURE LEGENDS

CfD(A%) vs, A4 at various b for anisotropy parameters

e s
a,=b, =0, b =0.5 (a) B =10, £ = 0.67, =% = 3.42;

2 2 1 L
% Z %
) B =3, £=0.67, £ = 5.07; () £ =3, £ = 1.5,
Me?
= = 5.07. Curves in the main portion of each frame

correspond to b* = 0,5, 0.9, 1.0, 1.1 and 1.3. The marks on
the abscissae at &+ = - 0.67 or ~1.5 and 1.0 indicate con-
servation limits. For comparison with a quantum caleculation,
small marks around ad= 0 indicate A+  values CorTespond-
ing to unit changes in the rotor quantum number for Jﬁf;w 0.1
(changes corresponding to A /=+1, +2, ... , + 5 ave
shown). Curves in the insets to the right of each frame
correspond to b* = 1.3 and 1.5 (dashed curves are simple
Gaussians computed from the second moments, for bbﬁ€ = 1.5).
Insets to the left give Zb*ﬁgtd{) yg:b* for the indicated
values of Agﬁ (dashed curves correspond to negative A F v

solid curves to positive A'ﬁ).

Same as Figure 1 for a

it
o

i
o
o

It

2 1 0.5.

1 0, a, = b, 0.5. Note that only

Same ag Figure 1 for b

|
o’
1

£
curves corresponding to b = 0.5, 0.9, 1.0, and 1.1 are
plotted in the main portion of each frame.
Inversions obtained from the first 7 and first 10 moments

of the indicated rectangular probability density function.
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